### metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### catena-Poly[[aqua(dipyrido[3,2-a:2',3'-c]phenazine- $\kappa^2 N^4$ , $N^5$ )zinc(II)]- $\mu$ -pyrazine-2,3-dicarboxylato- $\kappa^3 N^1$ , $O^2$ : $O^3$ ]

# Xin Wang,<sup>a</sup> Xiu-Ying Li,<sup>b</sup> Qing-Wei Wang<sup>b</sup> and Guang-Bo Che<sup>b</sup>\*

<sup>a</sup>Jilin Agriculture Engineering Polytechnic College, Siping 136000, People's Republic of China, and <sup>b</sup>Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail: guangbochejl@yahoo.com

Received 9 July 2008; accepted 21 July 2008

Key indicators: single-crystal X-ray study; T = 292 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.048; wR factor = 0.148; data-to-parameter ratio = 13.2.

In the title compound,  $[Zn(C_6H_2N_2O_4)(C_{18}H_{10}N_4)(H_2O)]_n$  or  $[Zn(PZDC)(DPPZ)(H_2O)]_n$  (where DPPZ is dipyrido[3,2a:2',3'-c]phenazine and H<sub>2</sub>PZDC is pyrazine-2,3-dicarboxylic acid), the Zn atom is six-coordinated in a slightly distorted octahedral coordination geometry by three N atoms from one DPPZ ligand and one PZDC<sup>2-</sup> dianion, three O atoms from two different PZDC<sup>2-</sup> ligands and one water molecule. Each PZDC<sup>2-</sup> dianion serves as a spacer, connecting adjacent metal atoms into a polymeric chain structure parallel to the *b* axis. The chain motif is consolidated into a three-dimensional supramolecular network by O-H···O and O-H···N hydrogen bonds and  $\pi$ - $\pi$  aromatic stacking interactions involving adjacent DPPZ ligands and PZDC<sup>2-</sup> dianions with centroid-centroid separations of 3.522 (6) and 3.732 (8) Å, respectively.

#### **Related literature**

For related literature, see: Che *et al.* (2008); Che, Li *et al.* (2006); Che, Xu & Liu (2006); Liu *et al.* (2008); Xu *et al.* (2008).



#### **Experimental**

Crystal data

 $\begin{bmatrix} \text{Zn}(\text{C}_6\text{H}_2\text{N}_2\text{O}_4)(\text{C}_{18}\text{H}_{10}\text{N}_4)(\text{H}_2\text{O}) \end{bmatrix} & \gamma = 98.16 \text{ (3)}^{\circ} \\ M_r = 531.78 & V = 1012.9 \text{ (4)} \text{ Å}^3 \\ \text{Triclinic, } P\overline{1} & Z = 2 \\ a = 6.7821 \text{ (14)} \text{ Å} & \text{Mo } K\alpha \text{ radiation} \\ b = 7.4349 \text{ (15)} \text{ Å} & \mu = 1.27 \text{ mm}^{-1} \\ c = 20.410 \text{ (4)} \text{ Å} & T = 292 \text{ (2)} \text{ K} \\ \alpha = 91.26 \text{ (3)}^{\circ} & 0.31 \times 0.29 \times 0.21 \text{ mm} \\ \beta = 95.77 \text{ (3)}^{\circ} \end{cases}$ 

#### Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995)  $T_{\rm min} = 0.681, T_{\rm max} = 0.765$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.048$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.148$               | independent and constrained                                |
| S = 1.07                        | refinement                                                 |
| 4412 reflections                | $\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$  |
| 333 parameters                  | $\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$ |
|                                 |                                                            |

9890 measured reflections

 $R_{\rm int}=0.048$ 

4412 independent reflections

3278 reflections with  $I > 2\sigma(I)$ 

Table 1

Selected geometric parameters (Å, °).

| N1-Zn                   | 2.130 (3)  | O1-Zn                   | 2.172 (3)   |
|-------------------------|------------|-------------------------|-------------|
| N2-Zn                   | 2.167 (3)  | O1W-Zn                  | 2.120 (3)   |
| N5-Zn                   | 2.147 (3)  | O4-Zn <sup>i</sup>      | 2.051 (3)   |
|                         |            |                         |             |
| $O4^{ii}$ -Zn-O1W       | 90.19 (13) | O1W-Zn-N5               | 86.87 (13)  |
| O4 <sup>ii</sup> -Zn-N1 | 90.37 (12) | N1-Zn-N5                | 171.02 (11) |
| O1W-Zn-N1               | 96.93 (13) | O4 <sup>ii</sup> -Zn-N2 | 98.61 (11)  |
| O4 <sup>ii</sup> –Zn–N5 | 97.78 (12) | O1W-Zn-N2               | 169.43 (13) |
|                         |            |                         |             |

Symmetry codes: (i) x, y + 1, z; (ii) x, y - 1, z.

Table 2Hydrogen-bond geometry (Å, °).

| $D-\mathrm{H}\cdots A$                                                                          | D-H                  | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - H \cdots A$   |
|-------------------------------------------------------------------------------------------------|----------------------|-------------------------|------------------------|--------------------|
| $ \begin{array}{c} \hline O1W - HW1A \cdots O3^{iii} \\ O1W - HW1B \cdots N6^{iv} \end{array} $ | 0.66 (5)<br>0.82 (5) | 2.01 (5)<br>2.07 (5)    | 2.662 (4)<br>2.859 (5) | 169 (7)<br>159 (4) |
| Symmetry codes: (iii) x -                                                                       | 1, y - 1, z; (iv)    | -x, -y + 2, -           | z + 2.                 |                    |

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL-Plus* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors thank the Doctoral Foundation of Jilin Normal University (grant Nos. 2006006 and 2007009) and the Subject and Base Construction Foundation of Jilin Normal University (grant No. 2006041). Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2235).

#### References

- Che, G.-B., Li, W.-L., Kong, Z.-G., Su, Z.-S., Chu, B., Li, B., Zhang, Z.-Q., Hu,
- Z.-Z. & Chi, H.-J. (2006). Synth. Commun. **36**, 2519–2524. Che, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, **10**, 184–191.
- Che, G.-B., Xu, Z.-L. & Liu, C.-B. (2006). Acta Cryst. E62, m1695–m1696.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Liu, C.-B., Che, G.-B., Wang, Q.-W. & Xu, Z.-L. (2008). Chin. J. Inorg. Chem. 24, 835–838.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Xu, Z.-L., Li, X.-Y., Che, G.-B., Liu, C.-B. & Wang, Q.-W. (2008). Chin. J. Struct. Chem. 27, 593–597.

Acta Cryst. (2008). E64, m1078-m1079 [doi:10.1107/S1600536808022824]

*catena*-Poly[[aqua(dipyrido[3,2-*a*:2',3'-*c*]phenazine- $\kappa^2 N^4$ , $N^5$ )zinc(II)]- $\mu$ -pyrazine-2,3-di-carboxylato- $\kappa^3 N^1$ , $O^2$ : $O^3$ ]

#### X. Wang, X.-Y. Li, Q.-W. Wang and G.-B. Che

#### Comment

A successful strategy for preparing metal-organic supramolecular architectures is the assembly reaction between a transition  $d^{10}$  metal ion and two types of ligands with one acting as a bridging ligand and the other as a chelating ligand (Liu *et al.*, 2008; Che *et al.*, 2008). Pyrazine-2,3-dicarboxylic acid (H<sub>2</sub>PZDC) possesses the ability to bridge and chelate metal atoms using the carboxylate oxygen atoms and nitrogen atoms (Xu *et al.*, 2008). 1,10-Phenanthroline (phen) and its derivatives are important chelating ligands for the construction of metal-organic complexes (Che, Xu & Liu, 2006). Dipyrido[3,2-a:2',3'-c]-phenazine (DPPZ) as a phen derivative possesses potential supramolecular recognition sites for  $\pi$ - $\pi$  aromatic stacking interactions. The present attempt at synthesizing a new zinc polymer with DPPZ and H<sub>2</sub>PZDC gave the title complex, [Zn(DPPZ)(PZDC)(H<sub>2</sub>O)]<sub>n</sub>, whose structure is reported here.

The Zn atom is six-coordinated by three N atoms from one DPPZ ligand and one PZDC<sup>2-</sup> ligand, and three O atoms from two different PZDC<sup>2-</sup> ligands and one water molecule in a slightly distorted octahedral coordination geometry (Fig. 1). The Zn—O distances range from 2.051 (3) Å to 2.172 (3) Å and the Zn—N lengths from 2.130 (3) Å to 2.167 (3) Å (Table 1). Each PZDC<sup>2-</sup> dianion serves as a spacer to connect adjacent metal centres into a one-dimensional chain structure parallel to the *b* axis. Neighbouring chains interact through  $\pi$ - $\pi$  contacts, leading to a three-dimensional supramolecular structure (Fig. 2). There are two types of  $\pi$ - $\pi$  interactions, occurring between adjacent DPPZ ligands (centroid-to-centroid separation = 3.732 (8) Å) and PZDC<sup>2-</sup> anions (centroid-to-centroid separation = 3.522 (6) Å). Hydrogen bonds involving the O1W atom as donor and the N6 and O3 atoms of the PZDC<sup>2-</sup> dianion as acceptors further stabilize the structure (Table 2).

#### **Experimental**

The DPPZ ligand was synthesized according to the literature method (Che, Li *et al.*, 2006). The title compound was hydrothermally synthesized under autogenous pressure: a mixture of DPPZ, H<sub>2</sub>PZDC, ZnNO<sub>3</sub> and water in a molar ratio of 1:1:1:5000 was sealed in a Teflon-lined autoclave and heated to 433 K for 3 d. Upon cooling and opening the bomb, yellow blocks of the title compound were obtained (83% yield based on Zn).

#### Refinement

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with  $U_{iso}(H)=1.2U_{eq}(C)$ . The hydrogen atoms of water molecule were located from a difference Fourier map and refined freely. **Figures** 



Fig. 1. A view of the title compound. Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms). [Symmetry code: (i) x, y + 1, z.]

Fig. 2. Packing diagram of the three-dimensional supramolecular structure of the title compound formed *via*  $\pi$ - $\pi$  interactions. H atoms are omitted for clarity.

# *catena*-Poly[[aqua(dipyrido[3,2-a:2',3'-c]phenazine- $\kappa^2 N^4$ , $N^5$ )zinc(II)]- $\mu$ -pyrazine-2,3-dicarboxylato- $\kappa^3 N^1$ , $O^2$ : $O^3$ ]

| Crystal data                                                                                                                          |                                              |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| [Zn(C <sub>6</sub> H <sub>2</sub> N <sub>2</sub> O <sub>4</sub> )(C <sub>18</sub> H <sub>10</sub> N <sub>4</sub> )(H <sub>2</sub> O)] | Z = 2                                        |
| $M_r = 531.78$                                                                                                                        | $F_{000} = 540$                              |
| Triclinic, <i>P</i> T                                                                                                                 | $D_{\rm x} = 1.744 {\rm ~Mg~m^{-3}}$         |
| Hall symbol: -P 1                                                                                                                     | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| a = 6.7821 (14)  Å                                                                                                                    | Cell parameters from 4412 reflections        |
| b = 7.4349 (15)  Å                                                                                                                    | $\theta = 3.0 - 27.5^{\circ}$                |
| c = 20.410 (4)  Å                                                                                                                     | $\mu = 1.27 \text{ mm}^{-1}$                 |
| $\alpha = 91.26 \ (3)^{\circ}$                                                                                                        | T = 292 (2)  K                               |
| $\beta = 95.77 \ (3)^{\circ}$                                                                                                         | Block, yellow                                |
| $\gamma = 98.16 \ (3)^{\circ}$                                                                                                        | $0.31\times0.29\times0.21~mm$                |
| $V = 1012.9 (4) \text{ Å}^3$                                                                                                          |                                              |

Data collection

| Rigaku R-AXIS RAPID<br>diffractometer                        | 4412 independent reflections           |
|--------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                     | 3278 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                      | $R_{\rm int} = 0.048$                  |
| Detector resolution: 10.0 pixels mm <sup>-1</sup>            | $\theta_{\text{max}} = 27.5^{\circ}$   |
| T = 292(2)  K                                                | $\theta_{\min} = 3.0^{\circ}$          |
| ω scans                                                      | $h = -8 \rightarrow 8$                 |
| Absorption correction: multi-scan<br>(ABSCOR; Higashi, 1995) | $k = -9 \rightarrow 8$                 |
| $T_{\min} = 0.681, \ T_{\max} = 0.765$                       | $l = -26 \rightarrow 26$               |
| 9890 measured reflections                                    |                                        |

Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                               |
|----------------------------------------------------------------|------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                           |
| $R[F^2 > 2\sigma(F^2)] = 0.048$                                | H atoms treated by a mixture of independent and constrained refinement             |
| $wR(F^2) = 0.148$                                              | $w = 1/[\sigma^2(F_0^2) + (0.084P)^2 + 0.1727P]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.07                                                | $(\Delta/\sigma)_{max} < 0.001$                                                    |
| 4412 reflections                                               | $\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$                                |
| 333 parameters                                                 | $\Delta \rho_{min} = -0.58 \text{ e } \text{\AA}^{-3}$                             |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                                        |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x           | у          | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|-------------|------------|--------------|---------------------------|
| C1  | -0.3785 (6) | 0.2965 (5) | 0.7826 (2)   | 0.0344 (9)                |
| H1  | -0.4426     | 0.3029     | 0.8206       | 0.041*                    |
| C2  | -0.4723 (6) | 0.1853 (6) | 0.7307 (2)   | 0.0375 (10)               |
| H2  | -0.5931     | 0.1119     | 0.7349       | 0.045*                    |
| C3  | -0.3868 (6) | 0.1832 (6) | 0.6728 (2)   | 0.0395 (10)               |
| Н3  | -0.4528     | 0.1144     | 0.6364       | 0.047*                    |
| C4  | -0.1986 (6) | 0.2861 (5) | 0.6690 (2)   | 0.0291 (8)                |
| C5  | -0.0963 (6) | 0.2913 (5) | 0.60945 (19) | 0.0283 (8)                |
| C6  | -0.0924 (7) | 0.2081 (5) | 0.5015 (2)   | 0.0352 (9)                |
| C7  | -0.1870 (8) | 0.1180 (6) | 0.4421 (2)   | 0.0443 (11)               |
| H7  | -0.3185     | 0.0601     | 0.4400       | 0.053*                    |
| C8  | -0.0836 (8) | 0.1170 (6) | 0.3880 (2)   | 0.0493 (12)               |
| H8  | -0.1458     | 0.0582     | 0.3491       | 0.059*                    |
| C9  | 0.1164 (9)  | 0.2037 (6) | 0.3903 (2)   | 0.0514 (12)               |
| Н9  | 0.1845      | 0.2003     | 0.3531       | 0.062*                    |
| C10 | 0.2107 (8)  | 0.2921 (7) | 0.4464 (2)   | 0.0479 (12)               |
| H10 | 0.3420      | 0.3496     | 0.4471       | 0.058*                    |

| C11  | 0.1095 (7)   | 0.2967 (6)  | 0.5036 (2)   | 0.0379 (10)  |
|------|--------------|-------------|--------------|--------------|
| C12  | 0.1042 (6)   | 0.3850 (5)  | 0.61078 (19) | 0.0292 (8)   |
| C13  | 0.1983 (6)   | 0.4856 (5)  | 0.67084 (19) | 0.0286 (8)   |
| C14  | 0.3909 (6)   | 0.5847 (6)  | 0.6747 (2)   | 0.0345 (9)   |
| H14  | 0.4637       | 0.5883      | 0.6384       | 0.041*       |
| C15  | 0.4710 (6)   | 0.6763 (6)  | 0.7322 (2)   | 0.0346 (9)   |
| H15  | 0.5979       | 0.7444      | 0.7353       | 0.041*       |
| C16  | 0.3603 (6)   | 0.6662 (5)  | 0.7859 (2)   | 0.0326 (9)   |
| H16  | 0.4165       | 0.7264      | 0.8253       | 0.039*       |
| C17  | 0.0958 (5)   | 0.4841 (5)  | 0.72651 (18) | 0.0242 (7)   |
| C18  | -0.1092 (5)  | 0.3868 (5)  | 0.72530 (18) | 0.0256 (8)   |
| C19  | 0.1302 (5)   | 0.9551 (5)  | 0.89690 (18) | 0.0237 (7)   |
| C20  | 0.1992 (5)   | 1.1069 (5)  | 0.93824 (19) | 0.0247 (8)   |
| C21  | 0.2685 (6)   | 0.9238 (5)  | 1.02315 (19) | 0.0288 (8)   |
| H21  | 0.3121       | 0.9090      | 1.0671       | 0.035*       |
| C22  | 0.2102 (5)   | 0.7712 (5)  | 0.98204 (19) | 0.0261 (8)   |
| H22  | 0.2235       | 0.6566      | 0.9978       | 0.031*       |
| C23  | 0.0378 (6)   | 0.9589 (5)  | 0.82528 (19) | 0.0271 (8)   |
| C24  | 0.2040 (5)   | 1.3019 (5)  | 0.91602 (18) | 0.0249 (8)   |
| N1   | -0.1984 (5)  | 0.3963 (4)  | 0.78077 (16) | 0.0267 (7)   |
| N2   | 0.1761 (5)   | 0.5730 (4)  | 0.78317 (15) | 0.0271 (7)   |
| N3   | -0.1925 (5)  | 0.2047 (4)  | 0.55512 (17) | 0.0349 (8)   |
| N4   | 0.2041 (5)   | 0.3872 (5)  | 0.55828 (17) | 0.0348 (8)   |
| N5   | 0.1356 (4)   | 0.7877 (4)  | 0.92032 (15) | 0.0234 (6)   |
| N6   | 0.2640 (5)   | 1.0909 (4)  | 1.00185 (16) | 0.0281 (7)   |
| 01   | -0.0880 (4)  | 0.8227 (4)  | 0.80655 (14) | 0.0362 (7)   |
| 02   | 0.0974 (5)   | 1.0921 (4)  | 0.79424 (15) | 0.0410 (7)   |
| O1W  | -0.2753 (5)  | 0.5957 (5)  | 0.91335 (17) | 0.0389 (8)   |
| O3   | 0.3705 (4)   | 1.3872 (4)  | 0.91050 (17) | 0.0427 (8)   |
| O4   | 0.0381 (4)   | 1.3587 (3)  | 0.90882 (14) | 0.0305 (6)   |
| Zn   | -0.03443 (6) | 0.57612 (5) | 0.85620 (2)  | 0.02642 (16) |
| HW1A | -0.368 (8)   | 0.552 (8)   | 0.909 (3)    | 0.054 (19)*  |
| HW1B | -0.295 (7)   | 0.692 (7)   | 0.930 (2)    | 0.034 (12)*  |

### Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.034 (2)   | 0.031 (2)   | 0.037 (2)   | -0.0052 (17) | 0.0120 (17)  | -0.0021 (17) |
| C2  | 0.032 (2)   | 0.036 (2)   | 0.042 (2)   | -0.0062 (18) | 0.0058 (18)  | -0.0039 (18) |
| C3  | 0.038 (2)   | 0.037 (2)   | 0.038 (2)   | -0.0082 (19) | 0.0014 (18)  | -0.0108 (18) |
| C4  | 0.0326 (19) | 0.0232 (18) | 0.030 (2)   | -0.0004 (15) | 0.0040 (16)  | -0.0055 (15) |
| C5  | 0.0333 (19) | 0.0250 (18) | 0.0254 (19) | 0.0033 (16)  | -0.0004 (15) | -0.0022 (15) |
| C6  | 0.047 (2)   | 0.032 (2)   | 0.027 (2)   | 0.0109 (19)  | -0.0004 (18) | -0.0010 (16) |
| C7  | 0.058 (3)   | 0.040 (2)   | 0.032 (2)   | 0.008 (2)    | -0.006 (2)   | -0.0054 (18) |
| C8  | 0.080 (4)   | 0.040 (2)   | 0.026 (2)   | 0.015 (2)    | -0.011 (2)   | -0.0046 (18) |
| C9  | 0.082 (4)   | 0.043 (3)   | 0.032 (2)   | 0.011 (3)    | 0.019 (2)    | -0.003 (2)   |
| C10 | 0.065 (3)   | 0.048 (3)   | 0.033 (2)   | 0.011 (2)    | 0.013 (2)    | -0.001 (2)   |
| C11 | 0.050 (2)   | 0.034 (2)   | 0.030 (2)   | 0.007 (2)    | 0.0097 (19)  | -0.0021 (17) |

| C12 | 0.0334 (19) | 0.0291 (19) | 0.025 (2)   | 0.0046 (16)   | 0.0045 (16)  | -0.0019 (15)  |
|-----|-------------|-------------|-------------|---------------|--------------|---------------|
| C13 | 0.0273 (18) | 0.0256 (19) | 0.031 (2)   | -0.0009 (15)  | -0.0011 (15) | 0.0024 (15)   |
| C14 | 0.033 (2)   | 0.037 (2)   | 0.035 (2)   | 0.0046 (17)   | 0.0107 (17)  | 0.0014 (17)   |
| C15 | 0.0257 (18) | 0.039 (2)   | 0.037 (2)   | -0.0023 (17)  | 0.0029 (17)  | 0.0059 (18)   |
| C16 | 0.032 (2)   | 0.034 (2)   | 0.029 (2)   | -0.0023 (17)  | -0.0001 (16) | -0.0016 (16)  |
| C17 | 0.0242 (17) | 0.0212 (17) | 0.0275 (19) | 0.0049 (14)   | 0.0029 (14)  | 0.0012 (14)   |
| C18 | 0.0274 (18) | 0.0208 (17) | 0.0273 (19) | 0.0009 (14)   | -0.0003 (15) | 0.0009 (14)   |
| C19 | 0.0223 (16) | 0.0213 (17) | 0.0269 (19) | -0.0007 (14)  | 0.0061 (14)  | -0.0005 (14)  |
| C20 | 0.0207 (16) | 0.0185 (17) | 0.034 (2)   | -0.0023 (14)  | 0.0084 (15)  | -0.0024 (15)  |
| C21 | 0.0315 (18) | 0.0289 (19) | 0.0245 (19) | -0.0020 (16)  | 0.0060 (15)  | -0.0003 (15)  |
| C22 | 0.0281 (18) | 0.0223 (17) | 0.029 (2)   | 0.0052 (15)   | 0.0045 (15)  | 0.0031 (15)   |
| C23 | 0.0302 (18) | 0.0231 (18) | 0.028 (2)   | 0.0050 (15)   | 0.0032 (15)  | 0.0015 (15)   |
| C24 | 0.0307 (18) | 0.0192 (16) | 0.0228 (18) | -0.0046 (15)  | 0.0066 (15)  | -0.0052 (13)  |
| N1  | 0.0270 (15) | 0.0228 (15) | 0.0294 (17) | -0.0004 (13)  | 0.0050 (13)  | -0.0041 (12)  |
| N2  | 0.0301 (16) | 0.0242 (15) | 0.0240 (16) | -0.0034 (13)  | -0.0008 (13) | -0.0030 (12)  |
| N3  | 0.0423 (19) | 0.0304 (17) | 0.0305 (19) | 0.0023 (15)   | 0.0017 (15)  | -0.0043 (14)  |
| N4  | 0.0417 (19) | 0.0354 (18) | 0.0265 (18) | 0.0027 (15)   | 0.0038 (15)  | -0.0016 (14)  |
| N5  | 0.0243 (14) | 0.0201 (14) | 0.0260 (16) | 0.0017 (12)   | 0.0060 (12)  | 0.0013 (12)   |
| N6  | 0.0277 (15) | 0.0260 (16) | 0.0294 (17) | -0.0008 (13)  | 0.0049 (13)  | -0.0033 (13)  |
| 01  | 0.0410 (15) | 0.0258 (14) | 0.0365 (16) | -0.0014 (12)  | -0.0119 (13) | 0.0002 (12)   |
| O2  | 0.0549 (19) | 0.0329 (15) | 0.0347 (17) | 0.0005 (14)   | 0.0095 (14)  | 0.0072 (12)   |
| O1W | 0.0271 (16) | 0.0357 (18) | 0.052 (2)   | -0.0066 (14)  | 0.0164 (14)  | -0.0192 (15)  |
| O3  | 0.0335 (15) | 0.0341 (16) | 0.057 (2)   | -0.0112 (13)  | 0.0087 (14)  | 0.0051 (14)   |
| O4  | 0.0342 (14) | 0.0237 (13) | 0.0367 (16) | 0.0096 (11)   | 0.0091 (12)  | 0.0088 (11)   |
| Zn  | 0.0313 (3)  | 0.0203 (2)  | 0.0259 (3)  | -0.00162 (17) | 0.00328 (17) | -0.00223 (16) |

Geometric parameters (Å, °)

| C1—N1   | 1.341 (5) | C15—H15 | 0.9300    |
|---------|-----------|---------|-----------|
| C1—C2   | 1.374 (6) | C16—N2  | 1.335 (5) |
| C1—H1   | 0.9300    | С16—Н16 | 0.9300    |
| C2—C3   | 1.369 (6) | C17—N2  | 1.345 (5) |
| С2—Н2   | 0.9300    | C17—C18 | 1.471 (5) |
| C3—C4   | 1.402 (5) | C18—N1  | 1.341 (5) |
| С3—Н3   | 0.9300    | C19—N5  | 1.347 (4) |
| C4—C18  | 1.393 (5) | C19—C20 | 1.390 (5) |
| C4—C5   | 1.457 (5) | C19—C23 | 1.534 (5) |
| C5—N3   | 1.332 (5) | C20—N6  | 1.342 (5) |
| C5—C12  | 1.435 (5) | C20—C24 | 1.525 (5) |
| C6—N3   | 1.344 (5) | C21—N6  | 1.328 (5) |
| C6—C7   | 1.420 (6) | C21—C22 | 1.383 (5) |
| C6—C11  | 1.429 (6) | C21—H21 | 0.9300    |
| С7—С8   | 1.367 (7) | C22—N5  | 1.325 (5) |
| С7—Н7   | 0.9300    | С22—Н22 | 0.9300    |
| C8—C9   | 1.412 (7) | C23—O2  | 1.229 (4) |
| С8—Н8   | 0.9300    | C23—O1  | 1.253 (5) |
| C9—C10  | 1.360 (7) | C24—O3  | 1.231 (4) |
| С9—Н9   | 0.9300    | C24—O4  | 1.254 (5) |
| C10—C11 | 1.414 (6) | N1—Zn   | 2.130 (3) |
|         |           |         |           |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C10—H10     | 0.9300    | N2—Zn                    | 2.167 (3)  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|--------------------------|------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C11—N4      | 1.346 (5) | N5—Zn                    | 2.147 (3)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C12—N4      | 1.324 (5) | O1—Zn                    | 2.172 (3)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C12—C13     | 1.462 (5) | O1W—Zn                   | 2.120 (3)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C13—C17     | 1.390 (5) | O1W—HW1A                 | 0.66 (5)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C13—C14     | 1.399 (5) | O1W—HW1B                 | 0.82 (5)   |
| Cl4-H14  0.9300 $Z_n-04^{ii}$ 2.051 (3)    Cl5-Cl6  1.387 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C14—C15     | 1.367 (6) | O4—Zn <sup>i</sup>       | 2.051 (3)  |
| C15-C16  1.387 (6)    NI-C1-C2  122.7 (4)  N1-C18-C17  116.8 (3)    N1-C1-H1  118.6  C4-C18-C17  119.9 (3)    C2-C1-H1  118.6  N5-C19-C20  119.5 (3)    C3-C2-C1  119.5 (4)  N5-C19-C23  125.5 (3)    C1-C2-H12  120.2  C0-C19  121.5 (3)    C2-C3-C4  119.2 (4)  N6-C20-C24  125.5 (3)    C1-C2-H12  120.4  C19-C20-C24  125.5 (3)    C4-C3-H3  120.4  C19-C20-C24  125.5 (3)    C4-C3-H3  120.4  N6-C21-C22  122.1 (4)    C18-C4-C5  119.9 (3)  C22-C21-H21  119.0    C3-C4-C5  119.9 (3)  C22-C21-H22  119.9    N3-C5-C4  118.3 (3)  C21-C22-H122  119.9    N3-C5-C4  118.3 (3)  C21-C23-C19  116.4 (3)    N3-C6-C7  119.4 (4)  O2-C23-C19  116.4 (3)    N3-C6-C11  121.2 (4)  O1-C23-C19  116.4 (3)    N3-C6-C11  129.1 (4)  C2-C2-C20  115.7 (3)    C6-C7-H7  120.2  C1-N1-C18  17                                                                                                                                                                                     | C14—H14     | 0.9300    | Zn—O4 <sup>ii</sup>      | 2.051 (3)  |
| N1-C1-C2  122.7 (4)  N1-C18-C17  116.8 (3)    N1-C1-H1  118.6  C4-C18-C17  119.9 (3)    C2-C1-H1  118.6  N5-C19-C20  119.5 (3)    C3-C2-C1  119.5 (4)  N5-C19-C23  125.5 (3)    C1-C2-H2  120.2  C20-C19-C23  125.5 (3)    C2-C3-C4  119.2 (4)  N6-C20-C24  115.0 (3)    C2-C3-C4  119.9 (4)  N6-C20-C24  125.5 (3)    C4-C3-H3  120.4  C19-C20-C24  123.5 (3)    C4-C3-H3  120.4  N6-C21-C22  122.1 (4)    C18-C4-C5  119.9 (3)  C22-C21-H21  119.0    C3-C4-C5  129.9 (4)  N5-C22-C21  120.2 (3)    N3-C5-C12  121.8 (4)  N5-C22-H22  119.9    N3-C5-C4  120.0 (3)  C21-C22-H22  119.9    N3-C6-C7  119.4 (4)  02-C23-C19  116.4 (3)    N3-C6-C7  119.4 (4)  02-C23-C19  114.5 (3)    C7-C6-C11  119.3 (4)  03-C24-C20  116.4 (3)    C8-C7-H7  120.2  C1-N1-C18  17.4 (3)    C7-C8-C9 <t< td=""><td>C15—C16</td><td>1.387 (6)</td><td></td><td></td></t<>                                                                                                                 | C15—C16     | 1.387 (6) |                          |            |
| N1-C1-HI  118.6  C4-C18-C17  119.9 (3)    C2-C1-HI  118.6  N5-C19-C20  119.5 (3)    C3-C2-C1  119.5 (4)  N5-C19-C23  115.0 (3)    C3-C2-H2  120.2  C20-C19-C23  125.5 (3)    C1-C2-H2  120.2  N6-C20-C19  121.5 (3)    C2-C3-C4  119.2 (4)  N6-C20-C24  135.0 (3)    C2-C3-H3  120.4  C19-C20-C24  123.5 (3)    C4-C3-H3  120.4  N6-C21-C22  122.1 (4)    C18-C4-C5  119.9 (3)  C22-C21-H21  119.0    C3-C4-C5  122.9 (4)  N5-C22-C1  120.2 (3)    N3-C5-C12  121.8 (4)  N5-C22-H22  119.9    N3-C5-C4  120.0 (3)  C2-C3-C1  120.2 (3)    C12-C5-C4  120.0 (3)  C2-C3-C1  120.2 (3)    C12-C5-C4  120.0 (3)  C2-C2-C1  121.8 (3)    C12-C5-C4  120.0 (3)  C2-C2-C20  116.4 (3)    N3-C6-C11  119.4 (4)  02-C23-C19  114.5 (3)    C7-C6-C11  119.3 (4)  C3-C24-C20  115.7 (3)    C8-C7-H7  <                                                                                                                                                                                 | N1—C1—C2    | 122.7 (4) | N1—C18—C17               | 116.8 (3)  |
| C2-C1-H1    118.6    NS-C19-C20    119.5 (3)      C3-C2-C1    119.5 (4)    NS-C19-C23    15.0 (3)      C3-C2-H2    120.2    C20-C19-C23    125.5 (3)      C1-C2-H2    120.2    N6-C20-C19    121.5 (3)      C2-C3-C4    119.2 (4)    N6-C20-C24    123.5 (3)      C4-C3-H3    120.4    C19-C20-C24    123.5 (3)      C4-C3-H3    120.4    N6-C21-C22    122.1 (4)      C18-C4-C3    117.3 (4)    N6-C21-H21    119.0      C3-C4-C5    119.9 (3)    C22-C21-H21    120.2 (3)      N3-C5-C12    121.8 (4)    N5-C22-C12    119.9      N3-C5-C4    118.3 (3)    C21-C22-H22    119.9      N3-C6-C7    119.4 (4)    02-C23-O1    129.1 (4)      N3-C6-C11    121.2 (4)    OI-C32-C19    116.4 (3)      N3-C6-C7    119.6 (5)    03-C24-C20    115.7 (3)      C6-C7-H7    120.2    C1-N1-C18    117.8 (3)      C8-C7-H7    120.2    C1-N1-C18    117.4 (3)      C7-C8-C9    1                                                                                                    | N1—C1—H1    | 118.6     | C4—C18—C17               | 119.9 (3)  |
| C3-C2-C1    119.5 (4)    N5-C19-C23    115.0 (3)      C3-C2-H2    120.2    C20-C19-C23    125.5 (3)      C1-C2-H2    120.2    N6-C20-C19    121.5 (3)      C2-C3-C4    119.2 (4)    N6-C20-C24    123.5 (3)      C4-C3-H3    120.4    C19-C20-C24    123.5 (3)      C4-C3-H3    120.4    N6-C21-H21    119.0      C18-C4-C3    117.3 (4)    N6-C21-H21    119.0      C3-C4-C5    129.9 (4)    N5-C22-C11    120.2 (3)      N3-C5-C12    121.8 (4)    N5-C22-C11    120.2 (3)      N3-C5-C4    118.3 (3)    C21-C22-H22    119.9      C12-C5-C4    120.0 (3)    02-C23-C19    116.4 (3)      N3-C6-C7    119.4 (4)    02-C23-C19    116.4 (3)      N3-C6-C7    119.4 (4)    03-C24-C4    127.8 (3)      C7-C6-C11    119.3 (4)    03-C24-C4    128.3 (3)      C8-C7-H7    120.2    C1-N1-C18    117.8 (3)      C7-C8-C9    121.0 (4)    C1-N1-Z7    127.4 (3)      C7-C8-H8                                                                                                  | C2—C1—H1    | 118.6     | N5-C19-C20               | 119.5 (3)  |
| C3-C2-H2    120.2    C20-C19-C23    125.5 (3)      C1-C2-H2    120.2    N6-C20-C19    121.5 (3)      C2-C3-C4    119.2 (4)    N6-C20-C24    125.5 (3)      C4-C3-H3    120.4    C19-C20-C24    123.5 (3)      C4-C3-H3    120.4    N6-C21-C22    122.1 (4)      C18-C4-C3    117.3 (4)    N6-C21-C22    122.1 (4)      C3-C4-C5    122.9 (4)    N5-C22-C21    120.2 (3)      N3-C5-C12    121.8 (4)    N5-C22-H22    119.9      V3-C5-C4    118.3 (3)    C21-C22-H22    119.9      C12-C5-C4    120.0 (3)    02-C23-C19    1164 (3)      N3-C6-C11    121.2 (4)    01-C23-C19    1164 (3)      N3-C6-C11    121.2 (4)    01-C24-O4    127.8 (3)      C8-C7-M7    120.2    O4-C24-C20    116.4 (3)      C8-C7-H7    120.2    O4-C24-C20    115.7 (3)      C6-C7-H7    120.2    O4-C24-C20    115.7 (3)      C7-C8-C9    121.0 (4)    C1-N1-Zn    127.4 (3)      C7-C8-H8    <                                                                                                | C3—C2—C1    | 119.5 (4) | N5-C19-C23               | 115.0 (3)  |
| C1-C2-H2    120.2    N6-C20-C19    121.5 (3)      C2-C3-C4    119.2 (4)    N6-C20-C24    115.0 (3)      C2-C3-H3    120.4    C19-C20-C24    123.5 (3)      C4-C3-H3    120.4    N6-C21-C22    122.1 (4)      C18-C4-C3    117.3 (4)    N6-C21-H21    119.0      C3-C4-C5    119.9 (3)    C22-C21-H21    120.2 (3)      N3-C5-C12    121.8 (4)    N5-C22-H22    119.9      S3-C5-C4    118.3 (3)    C21-C22-H12    119.9      C12-C5-C4    120.0 (3)    02-C23-O1    129.1 (4)      N3-C6-C7    119.4 (4)    02-C23-C19    116.4 (3)      N3-C6-C11    119.3 (4)    03-C24-C20    116.4 (3)      C8-C7-H7    120.2    04-C24-C20    115.7 (3)      C6-C7-H7    120.2    04-C24-C20    115.7 (3)      C7-C8-C9    121.0 (4)    C1-N1-Zn    127.4 (3)      C7-C8-C9    121.0 (4)    C1-N1-Zn    127.2 (3)      C10-C9-H8    119.5    C16-N2-Zn    114.9 (2)      C9-C10-C11                                                                                                    | С3—С2—Н2    | 120.2     | C20—C19—C23              | 125.5 (3)  |
| C2-C3-C4    119.2 (4)    N6-C20-C24    115.0 (3)      C2-C3-H3    120.4    C19-C20-C24    123.5 (3)      C4-C3-H3    120.4    N6-C21-C22    122.1 (4)      C18-C4-C3    117.3 (4)    N6-C21-H21    119.0      C18-C4-C5    119.9 (3)    C22-C21-H21    120.2 (3)      N3-C5-C12    121.8 (4)    N5-C22-C21    120.2 (3)      N3-C5-C4    18.3 (3)    C21-C22-H22    119.9      N3-C5-C4    120.0 (3)    02-C23-O1    129.1 (4)      N3-C6-C7    119.4 (4)    02-C23-C19    116.4 (3)      N3-C6-C11    121.2 (4)    01-C23-C19    116.4 (3)      C8-C7-C6    119.6 (5)    03-C24-C20    116.4 (3)      C8-C7-H7    120.2    04-C24-C20    115.7 (3)      C6-C7-H7    120.2    04-C24-C20    115.7 (3)      C7-C8-C8    121.0 (4)    C1-N1-Zn    127.4 (3)      C7-C8-H8    119.5    C16-N2-Zn    114.9 (2)      C9-C8-H8    19.5    C16-N2-Zn    114.9 (2)      C9-C9-H9                                                                                                    | С1—С2—Н2    | 120.2     | N6-C20-C19               | 121.5 (3)  |
| C2-C3-H3120.4C19-C20-C24123.5 (3)C4-C3-H3120.4N6-C21-C22122.1 (4)C18-C4-C3117.3 (4)N6-C21-H21119.0C3-C4-C5119.9 (3)C22-C21-H21120.2 (3)N3-C5-C12121.8 (4)N5-C22-H22119.9N3-C5-C4118.3 (3)C21-C22-H22119.9C12-C5-C4120.0 (3)02-C23-C1120.1 (4)N3-C6-C7119.4 (4)02-C23-C19116.4 (3)N3-C6-C7119.4 (4)03-C24-O4127.8 (3)C7-C6-C11119.3 (4)03-C24-O4127.8 (3)C8-C7-C6119.6 (5)03-C24-C20116.4 (3)C7-C6-C11119.3 (4)03-C24-C20116.4 (3)C8-C7-H7120.204-C24-C20115.7 (3)C6-C7-H7120.2C1-N1-C18117.8 (3)C7-C8-M8119.5C16-N2-Zn127.2 (3)C7-C8-H8119.5C16-N2-Zn114.9 (2)C9-C8-H8119.5C16-N2-Zn113.4 (2)C8-C9-H9119.6C17-N2-Zn113.4 (2)C8-C9-H9119.6C17-N2-Zn113.4 (2)C8-C9-H9119.6C17-N2-Zn113.4 (2)C9-C8-H8119.5C16-N2-Zn113.4 (2)C9-C9-H9119.6C5-N3-C6116.8 (4)C9-C10-C11120.1 (5)C12-N4-C11117.0 (4)C9-C10-H10119.9C22-N5-Zn126.6 (2)N4-C11-C6121.5 (4)C21-N6-C20117.3 (3)C10-C1-C1-C1119.3 (3)HW1A-O1W-HW1B120.6 (2                                                               | C2—C3—C4    | 119.2 (4) | N6-C20-C24               | 115.0 (3)  |
| C4—C3—H3120.4N6—C21—C22122.1 (4)C18—C4—C3117.3 (4)N6—C21—H21119.0C18—C4—C5119.9 (3)C22—C21—H21119.0C3—C4—C5122.9 (4)N5—C22—C21120.2 (3)N3—C5—C12121.8 (4)N5—C22—H22119.9N3—C5—C4118.3 (3)C21—C22—H22119.9C12—C5—C4120.0 (3)02—C23—C1129.1 (4)N3—C6—C7119.4 (4)02—C23—C19114.5 (3)C7—C6—C11121.2 (4)01—C23—C19114.5 (3)C7—C6—C11119.3 (4)03—C24—C4127.8 (3)C8—C7—C6119.6 (5)03—C24—C20116.4 (3)C6—C7—H7120.204—C24—C20115.7 (3)C6—C7—H7120.2C1—NI—C18117.8 (3)C7—C8—C9121.0 (4)C1—NI—Zn127.2 (3)C7—C8—H8119.5C16—N2—C17118.8 (3)C10—C9—C8120.8 (5)C16—N2—Zn127.2 (3)C10—C9—C8120.8 (5)C16—N2—Zn113.4 (2)C8—C9—H9119.6C17—N2—Zn113.4 (2)C8—C9—H9119.6C17—N2—Zn113.4 (2)C8—C9—H9119.6C12—N4—C11117.0 (4)C9—C10—C11120.1 (5)C12—N4—C11117.0 (4)C9—C10—C11120.1 (5)C12—N5—Zn126.6 (2)N4—C11—C6121.5 (4)C21—N6—C20117.3 (3)C10—C11—C6119.3 (4)C14—O14—HW1A129 (5)N4—C11—C6119.3 (3)HW1A—O1W—HW1B120 (3)C10—C11—C6119.3 (3)C1                                                      | С2—С3—Н3    | 120.4     | C19—C20—C24              | 123.5 (3)  |
| C18-C4-C3  117.3 (4)  N6-C21-H21  119.0    C18-C4-C5  119.9 (3)  C22-C21-H21  119.0    C3-C4-C5  122.9 (4)  N5-C22-C21  120.2 (3)    N3-C5-C12  121.8 (4)  N5-C22-H22  119.9    C12-C5-C4  120.0 (3)  O2-C23-O1  129.1 (4)    N3-C6-C7  119.4 (4)  O2-C23-C19  116.4 (3)    N3-C6-C11  121.2 (24)  O1-C23-C19  114.5 (3)    C7-C6-C11  119.3 (4)  O3-C24-O4  127.8 (3)    C8-C7-C6  119.6 (5)  O3-C24-C20  115.7 (3)    C8-C7-H7  120.2  O4-C24-C20  115.7 (3)    C6-C7-H7  120.2  C1-N1-C18  117.8 (3)    C7-C8-B8  119.5  C16-N2-C17  118.8 (3)    C10-C9-C8  120.8 (5)  C16-N2-Zn  127.2 (3)    C10-C9-H9  119.6  C17-N2-Zn  113.4 (2)    C8-C9-H9  119.6  C5-N3-C6  116.8 (4)    C9-C10-C11  120.1 (5)  C12-N4-C11  117.0 (4)    C9-C10-H10  119.9  C22-N5-Zn  123.6 (2)    N4-C11-C10                                                                                                                                                                                  | С4—С3—Н3    | 120.4     | N6-C21-C22               | 122.1 (4)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C18—C4—C3   | 117.3 (4) | N6-C21-H21               | 119.0      |
| C3-C4-C5122.9 (4)N5-C22-C21120.2 (3)N3-C5-C12121.8 (4)N5-C22-H22119.9N3-C5-C4118.3 (3)C21-C22-H22119.9C12-C5-C4120.0 (3)02-C23-C10129.1 (4)N3-C6-C7119.4 (4)02-C23-C19116.4 (3)N3-C6-C11121.2 (4)01-C23-C19114.5 (3)C7-C6-C11119.3 (4)03-C24-O4127.8 (3)C8-C7-H7120.204-C24-C20115.7 (3)C6-C7-H7120.2C1-N1-C18117.8 (3)C7-C8-C9121.0 (4)C1-N1-Zn127.4 (3)C7-C8-H8119.5C16-N2-C17118.8 (3)C10-C9-C8120.8 (5)C16-N2-Zn113.4 (2)C9-C10-C11120.1 (5)C12-N4-C11117.0 (4)C9-C10-H10119.9C22-N5-Zn126.6 (2)N4-C11-C10119.3 (4)C19-N5-Zn113.1 (2)N4-C11-C6121.5 (4)C21-N6-C20117.3 (3)C10-C1-C5121.6 (4)Zn-O1W-HW1A129.(5)N4-C12-C5121.6 (4)Zn-O1W-HW1B123.(3)C5-C12-C13119.0 (3)Zn-O1W-HW1B123.(3)C5-C12-C13119.0 (3)Zn-O1W-HW1B123.(3)C5-C12-C13119.0 (3)C4-O1W-HW1B120.(6)C17-C13-C12119.8 (3)O4 <sup>ii</sup> -Zn-O1W90.37 (12)                                                                                                                                                 | C18—C4—C5   | 119.9 (3) | C22—C21—H21              | 119.0      |
| N3-C5-C12121.8 (4)N5-C22-H22119.9N3-C5-C4118.3 (3)C21-C22-H22119.9C12-C5-C4120.0 (3)02-C23-O1129.1 (4)N3-C6-C7119.4 (4)02-C23-C19116.4 (3)N3-C6-C11121.2 (4)01-C23-C19114.5 (3)C7-C6-C11119.3 (4)03-C24-O4127.8 (3)C8-C7-C6119.6 (5)03-C24-C20115.7 (3)C8-C7-C7120.204-C24-C20115.7 (3)C6-C7-H7120.2C1-N1-C18117.8 (3)C7-C8-C9121.0 (4)C1-N1-Zn127.4 (3)C7-C8-H8119.5C16-N2-C17118.8 (3)C10-C9-C8120.8 (5)C16-N2-C17118.8 (3)C10-C9-C9-C8120.8 (5)C16-N2-C17113.4 (2)C8-C9-H9119.6C17-N2-Zn113.4 (2)C8-C9-H9119.6C17-N2-Zn115.8 (4)C9-C10-C11120.1 (5)C12-N4-C11117.0 (4)C9-C10-H10119.9C22-N5-C19119.2 (3)C11-C10-H10119.3 (4)C19-N5-Zn113.1 (2)N4-C11-C6121.5 (4)C21-N6-C20117.3 (3)C10-C11-C6119.2 (4)C23-O1-Zn113.8 (2)N4-C12-C5121.6 (4)Zn-O1W-HW1B129 (5)N4-C12-C13119.0 (3)Zn-O1W-HW1B123 (3)C5-C12-C13119.0 (3)Zn-O1W-HW1B123 (3)C17-C13-C12119.8 (3)04 <sup>ii</sup> -Zn-O1W90.19 (13)C14-C13-C12122.2 (4)04 <sup>ii</sup> -Zn-N190.37 (12)                        | C3—C4—C5    | 122.9 (4) | N5-C22-C21               | 120.2 (3)  |
| N3C5C4118.3 (3)C21C22H22119.9C12C5C4120.0 (3)02C23O1129.1 (4)N3C6C7119.4 (4)02C23C19116.4 (3)N3C6C11121.2 (4)01C23C19114.5 (3)C7C6C11119.3 (4)03C24O4127.8 (3)C8C7H7120.204C24C20116.4 (3)C8C7H7120.2C1N1C18117.8 (3)C7C8C9121.0 (4)C1N1Zn127.4 (3)C7C8H8119.5C16N2C17118.8 (3)C7C8H8119.5C16N2C17118.8 (3)C10C9C8120.8 (5)C16N2Zn127.2 (3)C10C9H9119.6C5N3C6116.4 (4)C9C10H10119.9C22N5C19113.4 (2)C8C9H9119.6C5N3C6116.8 (4)C9C10H10119.9C22N5Zn126.6 (2)N4C11C10119.3 (4)C19N5Zn113.1 (2)N4C11C6121.5 (4)C21N6C20117.3 (3)C10C11C6119.2 (4)C23O1Zn113.8 (2)N4C12C5121.6 (4)ZnO1WHW1B120.3 (5)C12C13119.3 (3)HW1AO1W-HW1B123 (3)C5C12C13119.8 (3)O4 <sup>ii</sup> ZnO1W90.19 (13)C14C13C12119.8 (3)O4 <sup>ii</sup> -ZnO1W90.37 (12)                                                                                                                                                                                                                                      | N3—C5—C12   | 121.8 (4) | N5—C22—H22               | 119.9      |
| C12—C5—C4120.0 (3) $02$ —C23—01129.1 (4)N3—C6—C7119.4 (4) $02$ —C23—C19116.4 (3)N3—C6—C11121.2 (4) $01$ —C23—C19114.5 (3)C7—C6—C11119.3 (4) $03$ —C24—04127.8 (3)C8—C7—C6119.6 (5) $03$ —C24—C20116.4 (3)C8—C7—H7120.2 $04$ —C24—C20115.7 (3)C6—C7—H7120.2 $C1$ —N1—C18117.8 (3)C7—C8—C9121.0 (4) $C1$ —N1—Zn127.4 (3)C7—C8—H8119.5 $C16$ —N2—C17118.8 (3)C10—C9—C8120.8 (5) $C16$ —N2—C17118.8 (3)C10—C9—H9119.6 $C5$ —N3—C6116.8 (4)C9—C10—C11120.1 (5) $C12$ —N4—C11117.0 (4)C9—C10—H10119.9C22—N5—C19119.2 (3)C11—C10—H10119.9C22—N5—Zn126.6 (2)N4—C11—C10119.3 (4)C19—N5—Zn113.1 (2)N4—C11—C6121.5 (4)C21—N6—C20117.3 (3)C10—C11—C6119.2 (4)C21—N6—C20117.3 (3)C10—C11—C6119.2 (4)C21—N6—C20117.3 (3)C10—C11—C6119.2 (4)C21—N6—C20117.3 (3)C10—C11—C6119.2 (4)C21—O1—Zn113.8 (2)N4—C12—C13119.0 (3)Zn—O1W—HW1A129 (5)N4—C12—C13119.3 (3)HW1A—O1W—HW1B100 (6)C17—C13—C14118.0 (4)C24—O4—Zn <sup>i</sup> 127.6 (2)C17—C13—C12119.8 (3)O4 <sup>ii</sup> —Zn—O1W90.19 (13) | N3—C5—C4    | 118.3 (3) | C21—C22—H22              | 119.9      |
| N3-C6-C7119.4 (4) $02-C23-C19$ 116.4 (3)N3-C6-C11121.2 (4) $01-C23-C19$ 114.5 (3)C7-C6-C11119.3 (4) $03-C24-O4$ 127.8 (3)C8-C7-C6119.6 (5) $03-C24-C20$ 116.4 (3)C8-C7-H7120.2 $04-C24-C20$ 115.7 (3)C6-C7-H7120.2 $04-C24-C20$ 115.7 (3)C7-C8-C9121.0 (4) $C1-N1-C18$ 117.8 (3)C7-C8-H8119.5 $C18-N1-Zn$ 124.4 (3)C9-C8-H8119.5 $C16-N2-C17$ 118.8 (3)C10-C9-C8120.8 (5) $C16-N2-Zn$ 127.2 (3)C10-C9-H9119.6 $C5-N3-C6$ 116.8 (4)C9-C10-C11120.1 (5) $C12-N4-C11$ 117.0 (4)C9-C10-H10119.9C22-N5-C19119.2 (3)C11-C10-H10119.9C22-N5-Zn126.6 (2)N4-C11-C6121.5 (4)C19-N5-Zn113.1 (2)N4-C12-C5121.6 (4)Zn-O1-Zn113.8 (2)N4-C12-C5121.6 (4)Zn-O1-Zn113.8 (2)N4-C12-C5121.6 (4)Zn-O1-Zn113.8 (2)N4-C12-C13119.0 (3)Zn-O1W-HW1B129 (5)N4-C12-C13119.3 (3)HW1A-O1W-HW1B100 (6)C17-C13-C14118.0 (4)C24-O4-Zn <sup>i</sup> 127.6 (2)C17-C13-C12122.2 (4) $O4^{ii}-Zn-O1W$ 90.37 (12)                                                                                               | C12—C5—C4   | 120.0 (3) | O2—C23—O1                | 129.1 (4)  |
| N3-C6-C11121.2 (4)01-C23-C19114.5 (3)C7-C6-C11119.3 (4)03-C24-O4127.8 (3)C8-C7-C6119.6 (5)03-C24-C20116.4 (3)C8-C7-H7120.204-C24-C20115.7 (3)C6-C7-H7120.2C1-N1-C18117.8 (3)C7-C8-C9121.0 (4)C1-N1-Zn127.4 (3)C7-C8-H8119.5C18-N1-Zn114.9 (2)C9-C8-H8119.5C16-N2-C17118.8 (3)C10-C9-C8120.8 (5)C16-N2-Zn127.2 (3)C10-C9-H9119.6C5-N3-C6116.8 (4)C9-C10-C11120.1 (5)C12-N4-C11117.0 (4)C9-C10-H10119.9C22-N5-Zn126.6 (2)N4-C11-C10119.3 (4)C19-N5-Zn113.1 (2)N4-C11-C6121.5 (4)C21-N6-C20117.3 (3)C10-C11-C6119.2 (4)C23-O1-Zn113.8 (2)N4-C12-C5121.6 (4)Zn-O1W-HW1A129 (5)N4-C12-C13119.0 (3)Zn-O1W-HW1B100 (6)C17-C13-C14118.0 (4)C24-O4-Zn <sup>i</sup> 127.6 (2)C17-C13-C12119.8 (3)O4 <sup>ii</sup> -Zn-O1W90.37 (12)                                                                                                                                                                                                                                                   | N3—C6—C7    | 119.4 (4) | O2—C23—C19               | 116.4 (3)  |
| C7C6C11119.3 (4)O3C24O4127.8 (3)C8C7C6119.6 (5)O3C24C20116.4 (3)C8C7H7120.2O4C24C20115.7 (3)C6C7H7120.2C1N1C18117.8 (3)C7C8C9121.0 (4)C1N1Zn127.4 (3)C7C8H8119.5C18N1Zn114.9 (2)C9C8H8119.5C16N2C17118.8 (3)C10C9C8120.8 (5)C16N2Zn127.2 (3)C10C9H9119.6C17N2Zn113.4 (2)C8C9H9119.6C5N3C6116.8 (4)C9C10C11120.1 (5)C12N4C11117.0 (4)C9C10H10119.9C22N5C19119.2 (3)C11C10H10119.3 (4)C19N5Zn113.1 (2)N4C11C6121.5 (4)C21N6C20117.3 (3)C10C11C6119.2 (4)C23O1Zn113.8 (2)N4C12C5121.6 (4)ZnO1WHW1A129 (5)N4C12C13119.0 (3)ZnO1WHW1B100 (6)C17C13C14118.0 (4)C24O4Zn <sup>i</sup> 127.6 (2)C17C13C12119.8 (3)O4 <sup>ii</sup> -ZnO1W90.19 (13)C14C13C12122.2 (4)O4 <sup>ii</sup> -ZnN190.37 (12)                                                                                                                                                                                                                                                                                | N3—C6—C11   | 121.2 (4) | O1—C23—C19               | 114.5 (3)  |
| C8-C7-C6119.6 (5)O3-C24-C20116.4 (3)C8-C7-H7120.2O4-C24-C20115.7 (3)C6-C7-H7120.2C1-N1-C18117.8 (3)C7-C8-C9121.0 (4)C1-N1-Zn127.4 (3)C7-C8-H8119.5C16-N2-C17118.8 (3)C10-C9-C8120.8 (5)C16-N2-Zn127.2 (3)C10-C9-H9119.6C17-N2-Zn113.4 (2)C8-C9-H9119.6C5-N3-C6116.8 (4)C9-C10-C11120.1 (5)C12-N4-C11117.0 (4)C9-C10-H10119.9C22-N5-C19119.2 (3)C11-C10-H10119.3 (4)C19-N5-Zn113.1 (2)N4-C11-C6121.5 (4)C21-N6-C20117.3 (3)C10-C11-C6119.2 (4)C3-O1-Zn113.8 (2)N4-C12-C5121.6 (4)Zn-O1W-HW1A129 (5)N4-C12-C13119.0 (3)Zn-O1W-HW1B123 (3)C5-C12-C13119.3 (3)HW1A-O1W-HW1B100 (6)C17-C13-C12119.8 (3)O4 <sup>ii</sup> -Zn-O1W90.19 (13)C14-C13-C12122.2 (4)O4 <sup>ii</sup> -Zn-N190.37 (12)                                                                                                                                                                                                                                                                                   | C7—C6—C11   | 119.3 (4) | O3—C24—O4                | 127.8 (3)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C8—C7—C6    | 119.6 (5) | O3—C24—C20               | 116.4 (3)  |
| C6—C7—H7120.2C1—N1—C18117.8 (3)C7—C8—C9121.0 (4)C1—N1—Zn127.4 (3)C7—C8—H8119.5C18—N1—Zn114.9 (2)C9—C8—H8119.5C16—N2—C17118.8 (3)C10—C9—C8120.8 (5)C16—N2—Zn127.2 (3)C10—C9—H9119.6C17—N2—Zn113.4 (2)C8—C9—H9119.6C5—N3—C6116.8 (4)C9—C10—C11120.1 (5)C12—N4—C11117.0 (4)C9—C10—H10119.9C22—N5—C19119.2 (3)C11—C10—H10119.9C22—N5—Zn126.6 (2)N4—C11—C6121.5 (4)C19—N5—Zn113.1 (2)N4—C12—C5121.6 (4)Zn—O1W—HW1A129 (5)N4—C12—C13119.0 (3)Zn—O1W—HW1B123 (3)C5—C12—C13119.3 (3)HW1A—O1W—HW1B100 (6)C17—C13—C14118.0 (4)C24—O4—Zn <sup>i</sup> 127.6 (2)C17—C13—C12122.2 (4) $O4^{ii}$ —Zn—N190.37 (12)                                                                                                                                                                                                                                                                                                                                                                         | С8—С7—Н7    | 120.2     | O4—C24—C20               | 115.7 (3)  |
| C7—C8—C9121.0 (4)C1—N1—Zn127.4 (3)C7—C8—H8119.5C18—N1—Zn114.9 (2)C9—C8—H8119.5C16—N2—C17118.8 (3)C10—C9—C8120.8 (5)C16—N2—Zn127.2 (3)C10—C9—H9119.6C17—N2—Zn113.4 (2)C8—C9—H9119.6C5—N3—C6116.8 (4)C9—C10—C11120.1 (5)C12—N4—C11117.0 (4)C9—C10—H10119.9C22—N5—C19119.2 (3)C11—C10—H10119.3 (4)C19—N5—Zn123.6 (2)N4—C11—C6121.5 (4)C21—N6—C20117.3 (3)C10—C11—C6119.2 (4)C23—O1—Zn113.8 (2)N4—C12—C5121.6 (4)Zn—O1W—HW1A129 (5)N4—C12—C13119.0 (3)Zn—O1W—HW1B123 (3)C5—C12—C13119.3 (3)HW1A—O1W—HW1B100 (6)C17—C13—C12119.8 (3) $Q4^{ii}$ —Zn—O1W90.19 (13)C14—C13—C12122.2 (4) $Q4^{ii}$ —Zn—N190.37 (12)                                                                                                                                                                                                                                                                                                                                                                  | С6—С7—Н7    | 120.2     | C1—N1—C18                | 117.8 (3)  |
| C7—C8—H8119.5C18—N1—Zn114.9 (2)C9—C8—H8119.5C16—N2—C17118.8 (3)C10—C9—C8120.8 (5)C16—N2—Zn127.2 (3)C10—C9—H9119.6C17—N2—Zn113.4 (2)C8—C9—H9119.6C5—N3—C6116.8 (4)C9—C10—C11120.1 (5)C12—N4—C11117.0 (4)C9—C10—H10119.9C22—N5—C19119.2 (3)C11—C10—H10119.9C22—N5—Zn126.6 (2)N4—C11—C10119.3 (4)C19—N5—Zn113.1 (2)N4—C11—C6121.5 (4)C21—N6—C20117.3 (3)C10—C11—C6119.2 (4)C23—O1—Zn113.8 (2)N4—C12—C5121.6 (4)Zn—O1W—HW1A129 (5)N4—C12—C13119.0 (3)Zn—O1W—HW1B100 (6)C17—C13—C14118.0 (4)C24—O4—Zn <sup>i</sup> 127.6 (2)C17—C13—C12122.2 (4)O4 <sup>ii</sup> —Zn—N190.37 (12)                                                                                                                                                                                                                                                                                                                                                                                                | C7—C8—C9    | 121.0 (4) | C1—N1—Zn                 | 127.4 (3)  |
| C9—C8—H8119.5C16—N2—C17118.8 (3)C10—C9—C8120.8 (5)C16—N2—Zn127.2 (3)C10—C9—H9119.6C17—N2—Zn113.4 (2)C8—C9—H9119.6C5—N3—C6116.8 (4)C9—C10—C11120.1 (5)C12—N4—C11117.0 (4)C9—C10—H10119.9C22—N5—C19119.2 (3)C11—C10—H10119.9C22—N5—Zn126.6 (2)N4—C11—C10119.3 (4)C19—N5—Zn113.1 (2)N4—C11—C6121.5 (4)C21—N6—C20117.3 (3)C10—C11—C5121.6 (4)Zn—O1W—HW1A129 (5)N4—C12—C5121.6 (4)Zn—O1W—HW1B123 (3)C5—C12—C13119.3 (3)HW1A—O1W—HW1B100 (6)C17—C13—C14118.0 (4)C24—O4—Zn <sup>i</sup> 127.6 (2)C17—C13—C12129.3 (3)O4 <sup>ii</sup> —Zn—O1W90.37 (12)                                                                                                                                                                                                                                                                                                                                                                                                                            | С7—С8—Н8    | 119.5     | C18—N1—Zn                | 114.9 (2)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | С9—С8—Н8    | 119.5     | C16—N2—C17               | 118.8 (3)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C10—C9—C8   | 120.8 (5) | C16—N2—Zn                | 127.2 (3)  |
| C8—C9—H9119.6C5—N3—C6116.8 (4)C9—C10—C11120.1 (5)C12—N4—C11117.0 (4)C9—C10—H10119.9C22—N5—C19119.2 (3)C11—C10—H10119.9C22—N5—Zn126.6 (2)N4—C11—C10119.3 (4)C19—N5—Zn113.1 (2)N4—C11—C6121.5 (4)C21—N6—C20117.3 (3)C10—C11—C6119.2 (4)C23—O1—Zn113.8 (2)N4—C12—C5121.6 (4)Zn—O1W—HW1A129 (5)N4—C12—C13119.0 (3)Zn—O1W—HW1B123 (3)C5—C12—C13119.3 (3)HW1A—O1W—HW1B100 (6)C17—C13—C14118.0 (4)C24—O4—Zn <sup>i</sup> 127.6 (2)C14—C13—C12122.2 (4) $O4^{ii}$ —Zn—N190.37 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | С10—С9—Н9   | 119.6     | C17—N2—Zn                | 113.4 (2)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | С8—С9—Н9    | 119.6     | C5—N3—C6                 | 116.8 (4)  |
| C9—C10—H10119.9C22—N5—C19119.2 (3)C11—C10—H10119.9C22—N5—Zn126.6 (2)N4—C11—C10119.3 (4)C19—N5—Zn113.1 (2)N4—C11—C6121.5 (4)C21—N6—C20117.3 (3)C10—C11—C6119.2 (4)C23—O1—Zn113.8 (2)N4—C12—C5121.6 (4)Zn—O1W—HW1A129 (5)N4—C12—C13119.0 (3)Zn—O1W—HW1B123 (3)C5—C12—C13119.3 (3)HW1A—O1W—HW1B100 (6)C17—C13—C14118.0 (4)C24—O4—Zn <sup>i</sup> 127.6 (2)C17—C13—C12122.2 (4) $O4^{ii}$ —Zn—N190.37 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C9—C10—C11  | 120.1 (5) | C12—N4—C11               | 117.0 (4)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | С9—С10—Н10  | 119.9     | C22—N5—C19               | 119.2 (3)  |
| N4—C11—C10119.3 (4)C19—N5—Zn113.1 (2)N4—C11—C6121.5 (4)C21—N6—C20117.3 (3)C10—C11—C6119.2 (4)C23—O1—Zn113.8 (2)N4—C12—C5121.6 (4)Zn—O1W—HW1A129 (5)N4—C12—C13119.0 (3)Zn—O1W—HW1B123 (3)C5—C12—C13119.3 (3)HW1A—O1W—HW1B100 (6)C17—C13—C14118.0 (4)C24—O4—Zn <sup>i</sup> 127.6 (2)C17—C13—C12119.8 (3)O4 <sup>ii</sup> —Zn—O1W90.19 (13)C14—C13—C12122.2 (4)O4 <sup>ii</sup> —Zn—N190.37 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C11—C10—H10 | 119.9     | C22—N5—Zn                | 126.6 (2)  |
| N4—C11—C6121.5 (4)C21—N6—C20117.3 (3)C10—C11—C6119.2 (4)C23—O1—Zn113.8 (2)N4—C12—C5121.6 (4)Zn—O1W—HW1A129 (5)N4—C12—C13119.0 (3)Zn—O1W—HW1B123 (3)C5—C12—C13119.3 (3)HW1A—O1W—HW1B100 (6)C17—C13—C14118.0 (4)C24—O4—Zn <sup>i</sup> 127.6 (2)C17—C13—C12119.8 (3)O4 <sup>ii</sup> —Zn—O1W90.19 (13)C14—C13—C12122.2 (4)O4 <sup>ii</sup> —Zn—N190.37 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N4—C11—C10  | 119.3 (4) | C19—N5—Zn                | 113.1 (2)  |
| C10—C11—C6119.2 (4)C23—O1—Zn113.8 (2)N4—C12—C5121.6 (4)Zn—O1W—HW1A129 (5)N4—C12—C13119.0 (3)Zn—O1W—HW1B123 (3)C5—C12—C13119.3 (3)HW1A—O1W—HW1B100 (6)C17—C13—C14118.0 (4)C24—O4—Zn <sup>i</sup> 127.6 (2)C17—C13—C12119.8 (3)O4 <sup>ii</sup> —Zn—O1W90.19 (13)C14—C13—C12122.2 (4)O4 <sup>ii</sup> —Zn—N190.37 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N4—C11—C6   | 121.5 (4) | C21—N6—C20               | 117.3 (3)  |
| N4—C12—C5121.6 (4) $Zn$ —O1W—HW1A129 (5)N4—C12—C13119.0 (3) $Zn$ —O1W—HW1B123 (3)C5—C12—C13119.3 (3)HW1A—O1W—HW1B100 (6)C17—C13—C14118.0 (4)C24—O4— $Zn^i$ 127.6 (2)C17—C13—C12119.8 (3)O4 <sup>ii</sup> — $Zn$ —O1W90.19 (13)C14—C13—C12122.2 (4)O4 <sup>ii</sup> — $Zn$ —N190.37 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C10—C11—C6  | 119.2 (4) | C23—O1—Zn                | 113.8 (2)  |
| N4—C12—C13119.0 (3) $Zn$ —O1W—HW1B123 (3)C5—C12—C13119.3 (3)HW1A—O1W—HW1B100 (6)C17—C13—C14118.0 (4)C24—O4— $Zn^i$ 127.6 (2)C17—C13—C12119.8 (3)O4 <sup>ii</sup> — $Zn$ —O1W90.19 (13)C14—C13—C12122.2 (4)O4 <sup>ii</sup> — $Zn$ —N190.37 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N4—C12—C5   | 121.6 (4) | Zn—O1W—HW1A              | 129 (5)    |
| C5—C12—C13119.3 (3)HW1A—O1W—HW1B100 (6)C17—C13—C14118.0 (4) $C24$ —O4— $Zn^{i}$ 127.6 (2)C17—C13—C12119.8 (3) $O4^{ii}$ — $Zn$ —O1W90.19 (13)C14—C13—C12122.2 (4) $O4^{ii}$ — $Zn$ —N190.37 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N4—C12—C13  | 119.0 (3) | Zn—O1W—HW1B              | 123 (3)    |
| C17—C13—C14118.0 (4)C24—O4— $Zn^i$ 127.6 (2)C17—C13—C12119.8 (3)O4 <sup>ii</sup> — $Zn$ —O1W90.19 (13)C14—C13—C12122.2 (4)O4 <sup>ii</sup> — $Zn$ —N190.37 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C5—C12—C13  | 119.3 (3) | HW1A—O1W—HW1B            | 100 (6)    |
| C17—C13—C12 119.8 (3) O4 <sup>ii</sup> —Zn—O1W 90.19 (13)<br>C14—C13—C12 122.2 (4) O4 <sup>ii</sup> —Zn—N1 90.37 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C17—C13—C14 | 118.0 (4) | C24—O4—Zn <sup>i</sup>   | 127.6 (2)  |
| C14—C13—C12 122.2 (4) O4 <sup>ii</sup> —Zn—N1 90.37 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C17—C13—C12 | 119.8 (3) | O4 <sup>ii</sup> —Zn—O1W | 90.19 (13) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C14—C13—C12 | 122.2 (4) | O4 <sup>ii</sup> —Zn—N1  | 90.37 (12) |

| C15—C14—C13                                          | 119.5 (4) | O1W—Zn—N1               | 96.93 (13)  |  |  |
|------------------------------------------------------|-----------|-------------------------|-------------|--|--|
| C15—C14—H14                                          | 120.2     | O4 <sup>ii</sup> —Zn—N5 | 97.78 (12)  |  |  |
| C13—C14—H14                                          | 120.2     | O1W—Zn—N5               | 86.87 (13)  |  |  |
| C14—C15—C16                                          | 119.0 (4) | N1—Zn—N5                | 171.02 (11) |  |  |
| C14—C15—H15                                          | 120.5     | O4 <sup>ii</sup> —Zn—N2 | 98.61 (11)  |  |  |
| C16—C15—H15                                          | 120.5     | O1W—Zn—N2               | 169.43 (13) |  |  |
| N2-C16-C15                                           | 122.4 (4) | N1—Zn—N2                | 77.29 (11)  |  |  |
| N2-C16-H16                                           | 118.8     | N5—Zn—N2                | 97.65 (12)  |  |  |
| C15—C16—H16                                          | 118.8     | O4 <sup>ii</sup> —Zn—O1 | 174.40 (11) |  |  |
| N2—C17—C13                                           | 122.3 (3) | O1W—Zn—O1               | 90.70 (13)  |  |  |
| N2-C17-C18                                           | 116.9 (3) | N1—Zn—O1                | 95.01 (11)  |  |  |
| C13—C17—C18                                          | 120.8 (3) | N5—Zn—O1                | 76.76 (11)  |  |  |
| N1-C18-C4                                            | 123.3 (3) | N2—Zn—O1                | 81.10 (12)  |  |  |
| Symmetry codes: (i) $x, y+1, z$ ; (ii) $x, y-1, z$ . |           |                         |             |  |  |

### Hydrogen-bond geometry (Å, °)

| D—H···A                                                                 | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
|-------------------------------------------------------------------------|-------------|--------------|--------------|----------------------------------------------------------------------------|
| O1W—HW1A···O3 <sup>iii</sup>                                            | 0.66 (5)    | 2.01 (5)     | 2.662 (4)    | 169 (7)                                                                    |
| O1W—HW1B…N6 <sup>iv</sup>                                               | 0.82 (5)    | 2.07 (5)     | 2.859 (5)    | 159 (4)                                                                    |
| Symmetry codes: (iii) $x-1$ , $y-1$ , $z$ ; (iv) $-x$ , $-y+2$ , $-z+2$ | 2.          |              |              |                                                                            |







Fig. 2